6 research outputs found

    TPCNN: Two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach

    Get PDF
    Automatic liver and tumour segmentation in CT images are crucial in numerous clinical applications, such as postoperative assessment, surgical planning, and pathological diagnosis of hepatic diseases. However, there are still a considerable number of difficulties to overcome due to the fuzzy boundary, irregular shapes, and complex tissues of the liver. In this paper, for liver and tumor segmentation and to overcome the mentioned challenges a simple but powerful strategy is presented based on a cascade convolutional neural network. At the first, the input image is normalized using the Z-Score algorithm. This normalized image provides more information about the boundary of tumor and liver. Also, the Local Direction of Gradient (LDOG) which is a novel encoding algorithm is proposed to demonstrate some key features inside the image. The proposed encoding image is highly effective in recognizing the border of liver, even in the regions close to the touching organs. Then, a cascade CNN structure for extracting both local and semi-global features is used which utilized the original image and two other obtained images as the input data. Rather than using a complex deep CNN model with a lot of hyperparameters, we employ a simple but effective model to decrease the train and testing time. Our technique outperforms the state-of-the-art works in terms of segmentation accuracy and efficiency

    Theory-Based Failure Modes and Effect Analysis for Medication Errors

    No full text
    Medication Errors (MEs) are still significant challenges, especially in nonautomated health systems. Qualitative studies are mostly used to identify the parameters involved in MEs. Failing to provide accurate information in expert-based decisions can provoke unrealistic results and inappropriate corrective actions eventually. However, mostly, some levels of uncertainty accompany the decisions in real practice. This study tries to present a hybrid decision-making approach to assigning different weights to risk factors and considering the uncertainty in the ranking process in the Failure Modes and Effect Analysis (FMEA) technique. Initially, significant MEs are identified by three groups of qualified experts (doctors, nurses, and pharmacists). Afterward, for assigning weights to the risk factors, Z-number couples with the Stepwise Weight Assessment Ratio Analysis (SWARA) method, named Z-SWARA, to add reliability concept in the decision-making process. Finally, the identified MEs are ranked through the developed Weighted Aggregated Sum Product Assessment (WASPAS) method, namely, Z-WASPAS. To demonstrate the applicability of the proposed approach, the ranking results compare with typical methods, such as fuzzy-WASPAS and FMEA. The findings of the present study highlight improper medication administration as the main failure mode, which can result in a fatality or patient injury. Moreover, the utilization of multiple-criteria decision-making methods in combination with Z-number can be a useful tool in the healthcare management field since it can address the problems by considering reliability and uncertainty simultaneously

    Nerve optic segmentation in CT images using a deep learning model and at texture descriptor

    Get PDF
    The increased intracranial pressure (ICP) can be described as an increase in pressure around the brain and can lead to serious health problems. The assessment of ultrasound images is commonly conducted by skilled experts which is a time consuming approach, but advanced computer-aided diagnosis (CAD) systems can assist the physician to decrease the time of ICP diagnosis. The accurate detection of the nerve optic regions, with drawing a precise slope line behind the eyeball and calculating the diameter of nerve optic, are the main aims of this research. First, the Fuzzy C-mean (FCM) clustering is employed for segmenting the input CT screening images into the different parts. Second, a histogram equalization approach is usedforregion-basedimagequalityenhancement.Then,theLocalDirectionalNumbermethod(LDN)is used for representing some key information in a new image. Finally, a cascade Convolutional Neural Network (CNN) is employed for nerve optic segmentation by two distinct input images. Comprehensive experiments on the CT screening dataset [The Cancer Imaging Archive (TCIA)] consisting of 1600 images show the competitive results of inaccurate extraction of the brain features. Also, the indexes such as Dice, Specificity, and Precision for the proposed approach are reported 87.7%, 91.3%, and 90.1%, respectively. The final classification results show that the proposed approach effectively and accurately detects the nerve optic and its diameter in comparison with the other methods. Therefore, this method can be used for early diagnose of ICP and preventing the occurrence of serious health problems in patients

    Breast tumor localization and segmentation using machine learning techniques: overview of datasets, findings, and methods

    No full text
    The Global Cancer Statistics 2020 reported breast cancer (BC) as the most common diagnosis of cancer type. Therefore, early detection of such type of cancer would reduce the risk of death from it. Breast imaging techniques are one of the most frequently used techniques to detect the position of cancerous cells or suspicious lesions. Computer-aided diagnosis (CAD) is a particular generation of computer systems that assist experts in detecting medical image abnormalities. In the last decades, CAD has applied deep learning (DL) and machine learning approaches to perform complex medical tasks in the computer vision area and improve the ability to make decisions for doctors and radiologists. The most popular and widely used technique of image processing in CAD systems is segmentation which consists of extracting the region of interest (ROI) through various techniques. This research provides a detailed description of the main categories of segmentation procedures which are classified into three classes: supervised, unsupervised, and DL. The main aim of this work is to provide an overview of each of these techniques and discuss their pros and cons. This will help researchers better understand these techniques and assist them in choosing the appropriate method for a given use case
    corecore